
Haste makes Waste. Observed and Used for
Controlling Software Quality and Productivity

Keld Raaschou
SimCorp A/S, Denmark

keld.raaschou@simcorp.com

Abstract

The Rationale for Metrics

Some of the main reasons for performing metrics are
that we want to support and improve quality and
productivity. So which metrics can be more interesting
than quantifications of quality and productivity
themselves?
It is claimed that haste makes waste. But how hastily
should we choose to work in order to obtain an
optimum trade-off between quality and productivity?
Clearly, you are more productive when the quality of
your work is high. But how much should the value of
quality count?
 To address these questions, the Danish software
company, SimCorp, has established novelty concepts
for quantification of haste, waste, quality and
productivity.
 Haste makes Waste
The measurements confirm the old saying that haste
makes waste. Moreover, this observation has been
used as a basis for a formula for productivity as a
function of the changes made per hour and the costs
per error.
 Perspective
The perspective is that once you have determined the
total costs per error, then you can consciously
optimize and choose the right trade off between quality
and productivity – simply by planning for the right
level of changes per hour.

1. Introduction

 SimCorp is a Danish software-company that delivers
software for investment management. The product
scope is our main product, “SimCorp Dimension”,
which is maintained in one large product line, mainly
coded in APL.

A strict time-box based lifecycle model is used:
every six months, a new, improved version is released.

At any one time, a number of successive versions of
the system are in use.

We have collected comprehensive metrics for the
series of versions for more than 5 years. There is great
stability, regularity and similarity between the
versions. This means that the collected data provide an
outstanding basis for meaningful and accurate metrics
and comparisons between the properties of the
versions. In addition, estimation and planning of the
number of changes per version are well established.

One particular version is used for reference and has
index=1 for any type of measurement. So if e.g. the
quality of a particular version is 20% higher than the
quality of the reference version, then its quality index
is 1.20.

The symbol, ∝, indicates proportionality of relative
measures, rather than true equality of absolute
measures. This is no problem as long as you compare
indexed values and look at trends. The square of a
number is symbolized by “**2”.

The scope for the formulas is the development
organisation as a whole, and an entire version. E.g.
Changes per hour is a measure of the changes made for
that version by the entire development group, divided
by the hours spent by the entire development group
during the development period of the version.

2. Quality Concept

Quantification of quality does not make sense,
unless you determine which view of quality that you
want to quantify. SimCorp is aware of several different
views of quality, but in this investigation, we address
the error-related view of quality: a comparatively low
number of customer reported errors in the versions that
are released to customers.

”Comparatively” means that we do not just look at
the absolute number of reported errors. We also take
into account the amount of changes and the level of
customer usage over its lifetime.

A further explanation is given in the following
subsections.

2.1. Amount of Changes

We have managed to extract data for the number
and type of code changes from one version to the next
on a per code line basis. These measures have been
weighted by our well-established estimation
parameters for the effort required for the different sizes
and types of change, i.e. additions, modifications or
deletions.

The result is a measure of the amount of changes
that were made in each version. The measure
resembles the “code churn” measures reported by
Nagappan et. al. [2]. But our measure is a weighted
count instead of a simple count.

2.2. Inherent Errors

“Inherent errors” is the level of errors that
customers would report during the entire lifetimes of
the versions, if they were all exposed to the same,
standardized level of customer usage. This calculation
uses different weights for different criticalities of
errors.

Via a special model for customer usage, we were
able to predict and calculate the different versions’
number of inherent errors.

In the formulas below, the weighted level of
inherent errors is just referred to as “Errors”.

2.3. Formula for quality

According to the quality view that we have chosen
in this context, quality is the inverse of the number of
errors per change, so:

Errors
angesAmountOfCh Quality ∝

3. Productivity Concept

3.1. Rationale for a New Concept

According to IEEE-1045 [1], productivity is a
measure of output/input, or: the produced result
divided by the resources used for producing that result.

In our case, where our production is the changes
that we make, you would traditionally say that:

tEffortDevelopmen
angesAmountOfChtyProductivi ∝

IEEE-1045 [1] also recognizes that “productivity
metrics should be interpreted in the context of the
overall quality of the product”. But it is outside the
scope of the standard to determine how that aspect
could be quantified.

Our suggestion is to try and quantify a fair measure
of how productive the organisation really is: you
should give credit to the quality of what you produce,
and also to the difficulties associated with the effect of
size and complexity of the system that you are
maintaining.

3.2. Effect of Complexity

The isolated effect of an increased size and
complexity of the system is that any typical
maintenance task would require more effort. E.g. if it
required 5% more effort to perform the changes in a
new version, then we would say that the effect of
complexity in the new version was 1.05, relative to the
old version. By particular methods, we have been able
to establish rough measures of the effect of the
increasing size and complexity of the system.

Note that the effect of complexity should not be
confused with traditional measures of the complexity
itself.

 3.3. Value of Quality

How should quality be taken into account? We
cannot use the quality measure directly: twice the
quality implies that you are more productive, but
maybe not twice as productive. It appears to be
impossible to obtain consensus about how the value of
quality should be used in a productivity measure. But
the following directions show how to circumvent this
problem.

If it is impossible to compare the productivity of
versions with different quality, then we are forced to
compare versions at the point in time, where they have
the same quality. Theoretically, this would happen at
some future point in time, where the version has been
subject to a standardized level of customer usage
during all of its useful life. At that time, all the
version’s inherent errors would, by definition, have
been found and corrected. So at this point, all versions
would somehow have obtained the same quality.
Therefore, at this point, they would also have the same
value of quality. And this is how they can be viewed in
a predicted state, where everybody can agree that
productivity measures are directly comparable.

So you view the versions as they would be at a later
point in their lifecycle. This also implies extra costs.

The extra costs are the foreseen costs of all the
inherent errors that would eventually be found.

So now: Costs = DevelopmentCosts + ErrorCosts

3.4. Final Formula for Productivity

When we consider both the effect of complexity
and the value of quality, the formula changes to:

ErrorCosts tCostsDevelopmen
mplexityEffectOfCo angesAmountOfChtyProductivi

+
×

∝

4. Definition of Haste and Waste

In the actual context, haste is a measure of the level
of rush that developers feel when they perform
changes in order to maintain software.

The more changes you make per hour, the more
haste you have. The more complex and large your
system is, the more haste you will have, trying to
maintain it. The more skilled and efficient you are, the
less haste you shall need. So:

llFactorAverageSki
mplexityEffectOfCo Hour ChangesPer Haste ×

∝

Personal skill factors are a well-established and
constantly tuned basis for estimation in SimCorp: For
each individual, it is subjectively determined how
efficiently that person is working compared to a
standard staff with 1 year of experience. For the
organisation as a whole, you can calculate the average
skill factor.

Waste is defined as the relative costs of bad quality.

tCostsDevelopmen
rsCostOfErro Waste =

5. Comparison of Haste and Waste

Both measures, haste and waste, have been
normalised by indexing so that the indices for a
particular reference version were set to 1. You would
expect that high values of haste would give low values
of quality. If you assumed that Haste × Quality were
constant, then, according to the definitions, you would
expect that:

mplexityEffectOfCo
llFactorAverageSki

×∝ *2)*(Haste Waste

In our case, the AverageSkillFactors have had
approximately the same trend as the
EffectOfComplexity. So you would expect a high
correlation between Haste**2 and Waste. And indeed,
the correlation coefficient between the indices for
Haste**2 and Waste for 6 successive versions was

very high, namely around 0.98. So this is new
illustration of the old saying: “Haste makes waste”.

6. Use of Result for Control of Quality and
Productivity

In theory, you could alternate between 2 different
types of development periods: One where you made an
extremely high number of changes per hour, and
another, where you had little capacity, because you
were tied up with corrections of errors made in the
previous development period.

But let us, for the sake of simplicity, assume a
steady state, where the relative error costs, the
development costs, the skill factors and the effect of
complexity were constant from version to version. For
such a steady state, the haste-makes-waste rule could
be used for an easy gross calculation on how to
optimize productivity:

Due to waste, the effective development capacity
would be the basic capacity minus the lost capacity.
Moreover, in a steady state, the lost capacity would be
equal to the effective capacity times the waste.

So, the EffectiveCapacity = NormalCapacity minus
(EffectiveCapacity × Waste). This implies that our
capacity for making productive work is reduced by a
factor = (1 + Waste). So:

 Waste 1
HourChangesPertyProductivi

+
∝

If we assume that Waste ∝ Haste **2, then:
 *2*HourChangesPer Cst Waste ×=
Where Cst is a constant, and:

*2*llFactorAverageSki
rorCostsPerEr *2*mplexityEffectOfCo Cst ×

∝

Therefore, by insertion normalizing so that the
indexed values for the reference version become= 1:

2HourChangesPer Cst 1
HourChangesPer Cst) (1 ty Productivi

∗∗×+
×+

=

 A smooth graph of indexed values for Productivity
versus indexed values for ChangesPerHour was made,
and the constant, Cst, that gave the best fit, assuming
external costs = 0, was calculated.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0,9 1,4 1,9
Index for

ChangesPerHour

Index for
Productivity

ExternalCosts=0

ExternalCosts=50% of
Internal

External Costs =
Internal Costs

Figure 1. Productivity vs. ChangesPerHour

Figure 1 shows the productivity index relative to the

state of the reference version if external costs were
assumed to be = 0. Graphs for three different
assumptions of the external costs are shown.

The graphs for Productivity as a function of
ChangesPerHour resemble a number of upside down
parabolas – one for each assumed value of costs per
error. The costs per error = (Internal costs per error +
External costs per error) determine which of the graphs
that shall be used for optimization. The internal costs
per error are well known. The external costs per error,
like loss of goodwill, are harder to quantify.
Quantification of equivalent external costs per error is
a good candidate for future research.

For any assumption of CostsPerError, you can

calculate the value of ChangesPerHour that will
optimize the Productivity. Alternatively, you could
choose and obtain some other desired trade-off
between quality and productivity.

Note that the optimal number of ChangesPerHour is
calculated using the assumption of a long-term steady
state. Still, it is only valid for the current set of
parameter values. If the effect of complexity or the
costs per error increase, then the currently optimal
number of ChangesPerHour will be reduced. On the
other hand, if the organisation becomes more mature
and efficient, then the currently optimal number of
ChangesPerHour will increase, and the obtainable
productivity will increase.

7. Lessons Learned

Via predictions of inherent error levels, we have
established a new type of quality measure.

Also, we have managed to establish a novelty
productivity concept, which is viewed as a fair
measure of how productive we really are. The reason
for this acceptance is that it also takes complexity and

quality into account, and that there is a good
explanation of why and how it is done.

The measures for quality and productivity have
proven useful in several different fields: monitoring of
trends, planning, awareness, motivation via visual
progress, correction of wrong myths, measurement of
what works well, and potentially as a basis for
incentive systems.

Measures for haste and waste have been
established, and a high correlation between Haste
squared and Waste has been observed. This confirms
our intuitive expectations. The observation has been
used as a basis for a simplified gross calculation of a
formula for optimization of productivity via choice of
changes per hour. Our conscious choice of the number
of changes in each version is now supported by these
results.

These accomplishments are useful. But you will
probably need a high level of reliable metrics and
comparable projects, in order to fully utilize our results
in other companies.

Everybody talks about the weather, the quality and
the productivity. But who does anything about it? The
described concepts support the perspective that quality
and productivity are not just something that “happens”:
it is something that can be consciously chosen by
planning the level of changes per hour.

8. References

[1] IEEE Standard for Software Productivity Metrics, IEEE
Std 1045-1992, 17 September 1992.

[2] Nachiappan Nagappan & Thomas Ball, Use of Relative
Code Churn Measures to Predict System Defect Density,
ICSE ‘05 , May 15-21 2005,
http://research.microsoft.com/research/pubs/view.aspx?type=
Publication&id=1359

